Minimum Number of Colours to Avoid k-Term Monochromatic Arithmetic Progressions

By recalling van der Waerden theorem, there exists a least a positive integer w=w(k;r) such that for any n≥w, every r-colouring of [1,n] admits a monochromatic k-term arithmetic progression. Let k≥2 and rk(n) denote the minimum number of colour required so that there exists a rk(n)-colouring of [1,n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-01, Vol.10 (2), p.247
Hauptverfasser: Sim, Kai An, Wong, Kok Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By recalling van der Waerden theorem, there exists a least a positive integer w=w(k;r) such that for any n≥w, every r-colouring of [1,n] admits a monochromatic k-term arithmetic progression. Let k≥2 and rk(n) denote the minimum number of colour required so that there exists a rk(n)-colouring of [1,n] that avoids any monochromatic k-term arithmetic progression. In this paper, we give necessary and sufficient conditions for rk(n+1)=rk(n). We also show that rk(n)=2 for all k≤n≤2(k−1)2 and give an upper bound for rp(pm) for any prime p≥3 and integer m≥2.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10020247