A novel horizontal to vertical spectral ratio approach in a wired structural health monitoring system

This work studies the effect ambient seismic noise can have on building constructions, in comparison with the traditional study of strong seismic motion in buildings, for the purpose of structural health monitoring. Traditionally, engineers have observed the effect of earthquakes on buildings by usa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors and sensor systems 2014-08, Vol.3 (2), p.145-165
1. Verfasser: Pentaris, F. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work studies the effect ambient seismic noise can have on building constructions, in comparison with the traditional study of strong seismic motion in buildings, for the purpose of structural health monitoring. Traditionally, engineers have observed the effect of earthquakes on buildings by usage of seismometers at various levels. A new approach is proposed in which acceleration recordings of ambient seismic noise are used and horizontal to vertical spectra ratio (HVSR) process is applied, in order to determine the resonance frequency of movement due to excitation of the building from a strong seismic event. The HVSR technique is widely used by geophysicists to study the resonance frequency of sediments over bedrock, while its usage inside buildings is limited. This study applies the recordings inside two university buildings attached to each other, but with different construction materials and different years of construction. Also there is HVSR application in another much older building, with visible cracks in its structure. Sensors have been installed on every floor of the two university buildings, and recordings have been acquired both of ambient seismic noise and earthquakes. Resonance frequencies for every floor of every building are calculated, from both noise and earthquake records, using the HVSR technique for the ambient noise data and the receiver function (RF) for the earthquake data. Differential acceleration drift for every building is also calculated, and there is correlation with the vulnerability of the buildings. Results indicate that HVSR process on acceleration data proves to be an easy, fast, economical method for estimation of fundamental frequency of structures as well as an assessment method for building vulnerability estimation. Comparison between HVSR and RF technique shows an agreement at the change of resonance frequency as we move to higher floors.
ISSN:2194-878X
2194-8771
2194-878X
DOI:10.5194/jsss-3-145-2014