Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer

Fatty acids have been shown to modulate intestinal cholesterol absorption in cells and animals, a process that is mediated by several transporter proteins. Of these proteins, Niemann-Pick C1-Like 1 (NPC1L1) is a major contributor to this process. The current study investigates the unknown mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids in health and disease 2018-02, Vol.17 (1), p.32-14, Article 32
Hauptverfasser: Yang, Fang, Chen, Guoxun, Ma, Meihu, Qiu, Ning, Zhu, Lingjiao, Li, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fatty acids have been shown to modulate intestinal cholesterol absorption in cells and animals, a process that is mediated by several transporter proteins. Of these proteins, Niemann-Pick C1-Like 1 (NPC1L1) is a major contributor to this process. The current study investigates the unknown mechanism by which fatty acids modulate cholesterol absorption. We evaluated the effects of six fatty acids palmitic acid (PAM), oleic acid (OLA), linoleic acid (LNA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cholesterol uptake and transport in human enterocytes Caco-2 cells, and on the mRNA expression levels of NPC1L1, others proteins (ABCG5, ABCG8, ABCA1, ACAT2, MTP, Caveolin 1, Annexin-2) involved in cholesterol absorption, and SREBP-1 and SREBP-2 that are responsible for lipid metabolism. The polyunsaturated fatty acids (PUFAs), especially for EPA and DHA, dose-dependently inhibited cholesterol uptake and transport in Caco-2 monolayer, while saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) had no inhibitory effects. EPA and DHA inhibited cholesterol absorption in Caco-2 monolayer might be caused by down-regulating NPC1L1 mRNA and protein levels, which were associated with inhibition of SREBP-1/- 2 mRNA expression levels. Results from this study indicate that functional food containing high PUFAs may have potential therapeutic benefit to reduce cholesterol absorption. Further studies on this topic may provide approaches to control lipid metabolism and to promote health.
ISSN:1476-511X
1476-511X
DOI:10.1186/s12944-018-0675-y