Influence of Hydrothermal Modification on Adsorptive Performance of Clay Minerals for Malachite Green

Artificially modified adsorbing materials mainly aim to remedy the disadvantages of natural materials as much as possible. Using clay materials such as rectorite, sodium bentonite and metakaolinite (solid waste material) as base materials, hydrothermally modified and unmodified materials were compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-05, Vol.29 (9), p.1974
Hauptverfasser: Wang, Enwen, Huang, Teng, Wu, Qian, Huang, Lanchun, Kong, Desong, Wang, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificially modified adsorbing materials mainly aim to remedy the disadvantages of natural materials as much as possible. Using clay materials such as rectorite, sodium bentonite and metakaolinite (solid waste material) as base materials, hydrothermally modified and unmodified materials were compared. CM-HT and CM (adsorbing materials) were prepared and used to adsorb and purify wastewater containing malachite green (MG) dye, and the two materials were characterized through methods such as BET, FT-IR, SEM and XRD. Results: (1) The optimal conditions for hydrothermal modification of CM-HT were a temperature of 150 °C, a time of 2 h, and a liquid/solid ratio 1:20. (2) Hydrothermal modification greatly increased the adsorptive effect. The measured maximum adsorption capacity of CM-HT for MG reached 290.45 mg/g (56.92% higher than that of CM). The theoretical maximum capacity was 625.15 mg/g (186.15% higher than that of CM). (3) Because Al-OH and Si-O-Al groups were reserved in unmodified clay mineral adsorbing materials with good adsorbing activity, after hydrothermal modification, the crystal structure of the clay became loosened along the direction of the c axis, and the interlayer space increased to partially exchange interlayer metal cations connected to the bottom oxygen, giving CM-HT higher electronegativity and creating more crystal defects and chemically active adsorbing sites for high-performance adsorption. (4) Chemical adsorption was the primary way by which CM-HT adsorbed cationic dye, while physical adsorption caused by developed pore canal was secondary. The adsorption reaction occurred spontaneously.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29091974