Model and Algorithm for a Two-Machine Group Scheduling Problem with Setup and Transportation Time
This paper investigates a two-machine group scheduling problem with sequence-independent setup times and round-trip transportation times, which is derived from the production management requirements of modern steel manufacturing enterprises. The objective is to minimize the makespan. Addressing limi...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-03, Vol.12 (6), p.888 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates a two-machine group scheduling problem with sequence-independent setup times and round-trip transportation times, which is derived from the production management requirements of modern steel manufacturing enterprises. The objective is to minimize the makespan. Addressing limitations in prior studies, we consider a critical but largely ignored transportation method, namely round-trip transportation, and restricted transporter capacity between machines. To solve this problem, a mixed-integer programming model is first developed. Then, the problem complexity is analyzed for situations with both single and unlimited transporters. For the NP-hard case of a single transporter, we design an efficient two-stage heuristic algorithm with proven acceptable solution quality bounds. Extensive computational experiments based on steel plant data demonstrate the effectiveness of our approach in providing near-optimal solutions, and the maximum deviation between our algorithm and the optimal solution is 1.38%. This research can provide an operable optimization method that is valuable for group scheduling and transportation scheduling. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12060888 |