Adaptive Refinements of Pitch Tracking and HNR Estimation within a Vocoder for Statistical Parametric Speech Synthesis

Recent studies in text-to-speech synthesis have shown the benefit of using a continuous pitch estimate; one that interpolates fundamental frequency (F0) even when voicing is not present. However, continuous F0 is still sensitive to additive noise in speech signals and suffers from short-term errors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-06, Vol.9 (12), p.2460
Hauptverfasser: Al-Radhi, Mohammed Salah, Csapó, Tamás Gábor, Németh, Géza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies in text-to-speech synthesis have shown the benefit of using a continuous pitch estimate; one that interpolates fundamental frequency (F0) even when voicing is not present. However, continuous F0 is still sensitive to additive noise in speech signals and suffers from short-term errors (when it changes rather quickly over time). To alleviate these issues, three adaptive techniques have been developed in this article for achieving a robust and accurate F0: (1) we weight the pitch estimates with state noise covariance using adaptive Kalman-filter framework, (2) we iteratively apply a time axis warping on the input frame signal, (3) we optimize all F0 candidates using an instantaneous-frequency-based approach. Additionally, the second goal of this study is to introduce an extension of a novel continuous-based speech synthesis system (i.e., in which all parameters are continuous). We propose adding a new excitation parameter named Harmonic-to-Noise Ratio (HNR) to the voiced and unvoiced components to indicate the degree of voicing in the excitation and to reduce the influence of buzziness caused by the vocoder. Results based on objective and perceptual tests demonstrate that the voice built with the proposed framework gives state-of-the-art speech synthesis performance while outperforming the previous baseline.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9122460