Application of Active Disturbance Rejection in a Bearingless Machine with Split-Winding
In this paper it is proposed the displacement control of a bearingless induction machine (BIM) with split winding and optimized drive structure using Active Disturbance Rejection Control (ADRC). Considering that the BIM is a multivariable, nonlinear, and time-varying system with coupled variables, a...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-04, Vol.16 (7), p.3100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper it is proposed the displacement control of a bearingless induction machine (BIM) with split winding and optimized drive structure using Active Disturbance Rejection Control (ADRC). Considering that the BIM is a multivariable, nonlinear, and time-varying system with coupled variables, advanced control techniques can be useful in order to make the system operate efficiently and with good dynamic performance. The ADRC considers the total disturbance, composed of unmodeled dynamics, nonlinearities, uncertainties, and load variations, as an extended state and estimates it in real-time through a state observer. This increases the overall robustness of the control system to disturbances of different natures. The application of the ADRC technique on the radial position control of the BIM used in this work showed that a Linear version of ADRC is not able to compensate for radial load disturbances but this drawback can be solved by the use of a nonlinear observer in the ADRC structure. Besides that, both control versions of the ADRC were able to make stable the naturally unstable radial displacement of the machine’s rotor. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16073100 |