Design of All-Solid Dual-Concentric-Core Microstructure Fiber for Ultra-Broadband Dispersion Compensation

In this paper, the all-solid dual-concentric-core microstructure fiber (MSF) with ultra-broadband dispersion compensation characteristics is designed. The effects of microstructure fiber structure parameters on dispersion, phase-matching wavelength, and kappa value are analyzed by the multi-pole met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-08, Vol.9 (16), p.3366
Hauptverfasser: Wang, Chao, Zhang, Yajing, Wu, Zheng, Zhang, Guoxu, Zhang, Yiyang, Jiang, Linghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the all-solid dual-concentric-core microstructure fiber (MSF) with ultra-broadband dispersion compensation characteristics is designed. The effects of microstructure fiber structure parameters on dispersion, phase-matching wavelength, and kappa value are analyzed by the multi-pole method and mode coupling theory. The average dispersion compensation multiple is 18.45, that is, 1 km long dispersion compensated MSF can compensate for the cumulative dispersion of standard single-mode fiber of 18.45 km in the wavelength range of 1385~1575 nm by optimizing MSF parameters. The change range of residual dispersion is within ±0.72 ps/(nm·km), and the splicing loss with standard single-mode fiber is controlled below 5 dB within the compensation bandwidth of 190 nm. Compared with the air hole-quartz structure dual-concentric-core microstructure fiber, the designed fiber reduces the difficulty of fiber drawing, is easy to splice with standard single-mode fiber, and has wider compensation bandwidth as well as larger compensation multiple than the existing microstructure fiber. This lays a solid foundation for the optimization of dense wavelength division multiplexing networks and the construction of all-optical networks.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9163366