SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits

Local genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions. However, accurate estimation of local genetic correlation remains challenging, due to linkage disequilibrium in local genomic regions and sample overlap across studies. We introduce SUPERGNOVA,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2021-09, Vol.22 (1), p.262-262, Article 262
Hauptverfasser: Zhang, Yiliang, Lu, Qiongshi, Ye, Yixuan, Huang, Kunling, Liu, Wei, Wu, Yuchang, Zhong, Xiaoyuan, Li, Boyang, Yu, Zhaolong, Travers, Brittany G, Werling, Donna M, Li, James J, Zhao, Hongyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Local genetic correlation quantifies the genetic similarity of complex traits in specific genomic regions. However, accurate estimation of local genetic correlation remains challenging, due to linkage disequilibrium in local genomic regions and sample overlap across studies. We introduce SUPERGNOVA, a statistical framework to estimate local genetic correlations using summary statistics from genome-wide association studies. We demonstrate that SUPERGNOVA outperforms existing methods through simulations and analyses of 30 complex traits. In particular, we show that the positive yet paradoxical genetic correlation between autism spectrum disorder and cognitive performance could be explained by two etiologically distinct genetic signatures with bidirectional local genetic correlations.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-021-02478-w