Blow-up of solutions for a nonlinear Petrovsky type equation with initial data at arbitrary high energy level

In this paper, we study the initial boundary value problem for a Petrovsky type equation with a memory term, nonlinear weak damping, and a superlinear source: u t t + Δ 2 u − ∫ 0 t g ( t − τ ) Δ 2 u ( τ ) d τ + | u t | m − 2 u t = | u | p − 2 u , in  Ω × ( 0 , T ) . When the source is stronger than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2019-01, Vol.2019 (1), p.1-18, Article 15
Hauptverfasser: Liu, Lishan, Sun, Fenglong, Wu, Yonghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the initial boundary value problem for a Petrovsky type equation with a memory term, nonlinear weak damping, and a superlinear source: u t t + Δ 2 u − ∫ 0 t g ( t − τ ) Δ 2 u ( τ ) d τ + | u t | m − 2 u t = | u | p − 2 u , in  Ω × ( 0 , T ) . When the source is stronger than dissipations, we obtain the existence of certain weak solutions which blow up in finite time with initial energy E ( 0 ) = R for any given R ≥ 0 .
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-019-1136-x