Blow-up of solutions for a nonlinear Petrovsky type equation with initial data at arbitrary high energy level
In this paper, we study the initial boundary value problem for a Petrovsky type equation with a memory term, nonlinear weak damping, and a superlinear source: u t t + Δ 2 u − ∫ 0 t g ( t − τ ) Δ 2 u ( τ ) d τ + | u t | m − 2 u t = | u | p − 2 u , in Ω × ( 0 , T ) . When the source is stronger than...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2019-01, Vol.2019 (1), p.1-18, Article 15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the initial boundary value problem for a Petrovsky type equation with a memory term, nonlinear weak damping, and a superlinear source:
u
t
t
+
Δ
2
u
−
∫
0
t
g
(
t
−
τ
)
Δ
2
u
(
τ
)
d
τ
+
|
u
t
|
m
−
2
u
t
=
|
u
|
p
−
2
u
,
in
Ω
×
(
0
,
T
)
.
When the source is stronger than dissipations, we obtain the existence of certain weak solutions which blow up in finite time with initial energy
E
(
0
)
=
R
for any given
R
≥
0
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-019-1136-x |