Synthesis and Luminescent Properties of Carbon Nanodots Dispersed in Nanostructured Silicas

Luminescent carbon nanoparticles are a relatively new class of luminescent materials that have attracted the increasing interest of chemists, physicists, biologists and engineers. The present review has a particular focus on the synthesis and luminescent properties of carbon nanoparticles dispersed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-12, Vol.11 (12), p.3267
Hauptverfasser: Vasin, Andrii, Kysil, Dmytro, Rusavsky, Andriy, Isaieva, Oksana, Zaderko, Alexander, Nazarov, Alexei, Lysenko, Volodymyr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Luminescent carbon nanoparticles are a relatively new class of luminescent materials that have attracted the increasing interest of chemists, physicists, biologists and engineers. The present review has a particular focus on the synthesis and luminescent properties of carbon nanoparticles dispersed inside nanostructured silica of different natures: oxidized porous silicon, amorphous thin films, nanopowders, and nanoporous sol-gel-derived ceramics. The correlations of processing conditions with emission/excitation spectral properties, relaxation kinetics, and photoluminescence photodegradation behaviors are analyzed. Following the evolution of the photoluminescence (PL) through the "from-bottom-to-up" synthesis procedure, the transformation of molecular-like ultraviolet emission of organic precursor into visible emission of carbon nanoparticles is demonstrated. At the end of the review, a novel method for the synthesis of luminescent and transparent composites, in form of nanoporous silica filled with luminescent carbon nanodots, is presented. A prototype of white light emitting devices, constructed on the basis of such luminophores and violet light emitting diodes, is demonstrated.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11123267