Fibronectin glycation increases IGF-I induced proliferation of human aortic smooth muscle cells

The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetology and metabolic syndrome 2012-05, Vol.4 (1), p.19-19, Article 19
Hauptverfasser: Corrêa-Giannella, Maria Lúcia, de Azevedo, Maria Regina Andrade, Leroith, Derek, Giannella-Neto, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an important role. The objective of the present study was to investigate the effect of an AGE-modified extracellular matrix protein on IGF-I induced SMC proliferation and on the IGF-I-IGF binding protein 4 (IGFBP-4) axis under basal conditions and after stimulation with PDGF-BB. IGF-I resulted in significantly higher thymidine incorporation in SMC seeded on AGE-modified fibronectin (AGE-FN) in comparison to cells seeded on fibronectin (FN). This augmented proliferation could not be accounted for by increased expression of IGF-IR, by decreased secretion of IGFBP-4, a binding protein that inhibits IGF-I mitogenic effects or by increased IGF-IR autophosphorylation. PDGF-BB did not modulate IGF-IR and IGFBP-4 mRNA expression in any of the substrata, however, this growth factor elicited opposite effects on the IGFBP-4 content in the conditioned media, increasing it in cells plated on FN and diminishing it in cells plated on AGE-FN. These findings suggest that one mechanism by which AGE-modified proteins is involved in the pathogenesis of diabetes-associated atherosclerosis might be by increasing SMC susceptibility to IGF-I mitogenic effects.
ISSN:1758-5996
1758-5996
DOI:10.1186/1758-5996-4-19