Some novel estimates of Jensen and Hermite-Hadamard inequalities for h-Godunova-Levin stochastic processes
It is undeniable that convex and non-convex functions play an important role in optimization. As a result of its behavior, convexity also plays a significant role in discussing inequalities. It is clear that convexity and stochastic processes are intertwined. The stochastic process is a mathematical...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2023, Vol.8 (3), p.7277-7291 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is undeniable that convex and non-convex functions play an important role in optimization. As a result of its behavior, convexity also plays a significant role in discussing inequalities. It is clear that convexity and stochastic processes are intertwined. The stochastic process is a mathematical model that describes how systems or phenomena fluctuate randomly. Probability theory generally says that the convex function applied to the expected value of a random variable is bounded above by the expected value of the random variable's convex function. Furthermore, the deep connection between convex inequalities and stochastic processes offers a whole new perspective on the study of inequality. Although Godunova-Levin functions are well known in convex theory, their properties enable us to determine inequality terms with greater accuracy than those obtained from convex functions. In this paper, we established a more refined form of Hermite-Hadamard and Jensen type inequalities for generalized interval-valued h-Godunova-Levin stochastic processes. In addition, we provide some examples to demonstrate the validity of our main findings. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2023366 |