FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility

Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-04, Vol.8 (1), p.15031-15031, Article 15031
Hauptverfasser: Surdo, Nicoletta C., Berrera, Marco, Koschinski, Andreas, Brescia, Marcella, Machado, Matias R., Carr, Carolyn, Wright, Peter, Gorelik, Julia, Morotti, Stefano, Grandi, Eleonora, Bers, Donald M., Pantano, Sergio, Zaccolo, Manuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie, which detects compartmentalized cAMP with unprecedented accuracy. CUTie, targeted to specific multiprotein complexes at discrete plasmalemmal, sarcoplasmic reticular and myofilament sites, reveals differential kinetics and amplitudes of localized cAMP signals. This nanoscopic heterogeneity of cAMP signals is necessary to optimize cardiac contractility upon adrenergic activation. At low adrenergic levels, and those mimicking heart failure, differential local cAMP responses are exacerbated, with near abolition of cAMP signalling at certain locations. This work provides tools and fundamental mechanistic insights into subcellular adrenergic signalling in normal and pathological cardiac function. cAMP/PKA signalling plays important roles in physiology, but there are a lack of tools to spatially distinguish cAMP. Here the authors present a FRET-based cAMP biosensor they call CUTie that can directly compare cAMP signals at multiple subcellular sites and detect nanoscale heterogeneity in cAMP in cardiac myocytes.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15031