Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes

Traditional capacitive electrocardiogram (cECG) electrodes suffer from limited patient comfort, difficulty of disinfection and low signal-to-noise ratio in addition to the challenge of integrating them in wearables. A novel hybrid flexible cECG electrode was developed that offers high versatility in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5156
Hauptverfasser: Lessard-Tremblay, Mathieu, Weeks, Joshua, Morelli, Laura, Cowan, Glenn, Gagnon, Ghyslain, Zednik, Ricardo J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional capacitive electrocardiogram (cECG) electrodes suffer from limited patient comfort, difficulty of disinfection and low signal-to-noise ratio in addition to the challenge of integrating them in wearables. A novel hybrid flexible cECG electrode was developed that offers high versatility in the integration method, is well suited for large-scale manufacturing, is easy to disinfect in clinical settings and exhibits better performance over a comparable rigid contactless electrode. The novel flexible electrode meets the frequency requirement for clinically important QRS complex detection (0.67-5 Hz) and its performance is improved over rigid contactless electrode across all measured metrics as it maintains lower cut-off frequency, higher source capacitance and higher pass-band gain when characterized over a wide spectrum of patient morphologies. The results presented in this article suggest that the novel flexible electrode could be used in a medical device for cECG acquisition and medical diagnosis. The novel design proves also to be less sensitive to motion than a reference rigid electrode. We therefore anticipate it can represent an important step towards improving the repeatability of cECG methods while requiring less post-processing. This would help making cECG a viable method for remote cardiac health monitoring.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20185156