Residual-Based Simpler Block GMRES for Nonsymmetric Linear Systems with Multiple Right-Hand Sides

We propose in this paper a residual-based simpler block GMRES method for solving a system of linear algebraic equations with multiple right-hand sides. We show that this method is mathematically equivalent to the block GMRES method and thus equivalent to the simpler block GMRES method. Moreover, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mathematical Physics 2018-01, Vol.2018 (2018), p.1-12
Hauptverfasser: Wu, Qinghua, Lin, Yiqin, Bao, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose in this paper a residual-based simpler block GMRES method for solving a system of linear algebraic equations with multiple right-hand sides. We show that this method is mathematically equivalent to the block GMRES method and thus equivalent to the simpler block GMRES method. Moreover, it is shown that the residual-based method is numerically more stable than the simpler block GMRES method. Based on the deflation strategy proposed by Calandra et al. (2013), we derive a deflation strategy to detect the possible linear dependence of the residuals and a near rank deficiency occurring in the block Arnoldi procedure. Numerical experiments are conducted to illustrate the performance of the new method.
ISSN:1687-9120
1687-9139
DOI:10.1155/2018/1369707