FPGA-Based Implementation of a Multilayer Perceptron Suitable for Chaotic Time Series Prediction

Many biological systems and natural phenomena exhibit chaotic behaviors that are saved in time series data. This article uses time series that are generated by chaotic oscillators with different values of the maximum Lyapunov exponent (MLE) to predict their future behavior. Three prediction techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technologies (Basel) 2018-10, Vol.6 (4), p.90
Hauptverfasser: Pano-Azucena, Ana, Tlelo-Cuautle, Esteban, Tan, Sheldon, Ovilla-Martinez, Brisbane, De la Fraga, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many biological systems and natural phenomena exhibit chaotic behaviors that are saved in time series data. This article uses time series that are generated by chaotic oscillators with different values of the maximum Lyapunov exponent (MLE) to predict their future behavior. Three prediction techniques are compared, namely: artificial neural networks (ANNs), the adaptive neuro-fuzzy inference system (ANFIS) and least-squares support vector machines (SVM). The experimental results show that ANNs provide the lowest root mean squared error. That way, we introduce a multilayer perceptron that is implemented using a field-programmable gate array (FPGA) to predict experimental chaotic time series.
ISSN:2227-7080
2227-7080
DOI:10.3390/technologies6040090