An Efficient and Accurate Iris Recognition Algorithm Based on a Novel Condensed 2-ch Deep Convolutional Neural Network

Recently, deep learning approaches, especially convolutional neural networks (CNNs), have attracted extensive attention in iris recognition. Though CNN-based approaches realize automatic feature extraction and achieve outstanding performance, they usually require more training samples and higher com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-05, Vol.21 (11), p.3721
Hauptverfasser: Liu, Guoyang, Zhou, Weidong, Tian, Lan, Liu, Wei, Liu, Yingjian, Xu, Hanwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, deep learning approaches, especially convolutional neural networks (CNNs), have attracted extensive attention in iris recognition. Though CNN-based approaches realize automatic feature extraction and achieve outstanding performance, they usually require more training samples and higher computational complexity than the classic methods. This work focuses on training a novel condensed 2-channel (2-ch) CNN with few training samples for efficient and accurate iris identification and verification. A multi-branch CNN with three well-designed online augmentation schemes and radial attention layers is first proposed as a high-performance basic iris classifier. Then, both branch pruning and channel pruning are achieved by analyzing the weight distribution of the model. Finally, fast finetuning is optionally applied, which can significantly improve the performance of the pruned CNN while alleviating the computational burden. In addition, we further investigate the encoding ability of 2-ch CNN and propose an efficient iris recognition scheme suitable for large database application scenarios. Moreover, the gradient-based analysis results indicate that the proposed algorithm is robust to various image contaminations. We comprehensively evaluated our algorithm on three publicly available iris databases for which the results proved satisfactory for real-time iris recognition.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21113721