On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients
We consider nonlinear Kolmogorov-Fokker-Planck type equations of the form \begin{document}$ \begin{equation*} (\partial_t+X\cdot\nabla_Y)u = \nabla_X\cdot(A(\nabla_X u, X, Y, t)). \end{equation*} $\end{document} The function $ A = A(\xi, X, Y, t): \mathbb R^m\times \mathbb R^m\times \mathbb R^m\t...
Gespeichert in:
Veröffentlicht in: | Mathematics in engineering 2023-01, Vol.5 (2), p.1-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider nonlinear Kolmogorov-Fokker-Planck type equations of the form
\begin{document}$ \begin{equation*} (\partial_t+X\cdot\nabla_Y)u = \nabla_X\cdot(A(\nabla_X u, X, Y, t)). \end{equation*} $\end{document}
The function $ A = A(\xi, X, Y, t): \mathbb R^m\times \mathbb R^m\times \mathbb R^m\times \mathbb R\to \mathbb R^m $ is assumed to be continuous with respect to $ \xi $, and measurable with respect to $ X, Y $ and $ t $. $ A = A(\xi, X, Y, t) $ is allowed to be nonlinear but with linear growth. We establish higher integrability and local boundedness of weak sub-solutions, weak Harnack and Harnack inequalities, and Hölder continuity with quantitative estimates. In addition we establish existence and uniqueness of weak solutions to a Dirichlet problem in certain bounded $ X $, $ Y $ and $ t $ dependent domains. |
---|---|
ISSN: | 2640-3501 2640-3501 |
DOI: | 10.3934/mine.2023043 |