On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients

We consider nonlinear Kolmogorov-Fokker-Planck type equations of the form \begin{document}$ \begin{equation*} (\partial_t+X\cdot\nabla_Y)u = \nabla_X\cdot(A(\nabla_X u, X, Y, t)). \end{equation*} $\end{document} The function $ A = A(\xi, X, Y, t): \mathbb R^m\times \mathbb R^m\times \mathbb R^m\t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in engineering 2023-01, Vol.5 (2), p.1-37
Hauptverfasser: Garain, Prashanta, Nyström, Kaj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider nonlinear Kolmogorov-Fokker-Planck type equations of the form \begin{document}$ \begin{equation*} (\partial_t+X\cdot\nabla_Y)u = \nabla_X\cdot(A(\nabla_X u, X, Y, t)). \end{equation*} $\end{document} The function $ A = A(\xi, X, Y, t): \mathbb R^m\times \mathbb R^m\times \mathbb R^m\times \mathbb R\to \mathbb R^m $ is assumed to be continuous with respect to $ \xi $, and measurable with respect to $ X, Y $ and $ t $. $ A = A(\xi, X, Y, t) $ is allowed to be nonlinear but with linear growth. We establish higher integrability and local boundedness of weak sub-solutions, weak Harnack and Harnack inequalities, and Hölder continuity with quantitative estimates. In addition we establish existence and uniqueness of weak solutions to a Dirichlet problem in certain bounded $ X $, $ Y $ and $ t $ dependent domains.
ISSN:2640-3501
2640-3501
DOI:10.3934/mine.2023043