Global Well-Posedness for the Compressible Nematic Liquid Crystal Flows

In this paper, we prove the unique existence of global strong solutions and decay estimates for the simplified Ericksen–Leslie system describing compressible nematic liquid crystal flows in RN, 3≤N≤7. Firstly, we rewrite the system in Lagrange coordinates, and secondly, we prove the global well-pose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-12, Vol.11 (1), p.181
1. Verfasser: Murata, Miho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the unique existence of global strong solutions and decay estimates for the simplified Ericksen–Leslie system describing compressible nematic liquid crystal flows in RN, 3≤N≤7. Firstly, we rewrite the system in Lagrange coordinates, and secondly, we prove the global well-posedness for the transformed system, which is the main task in this paper. The proof is based on the maximal Lp-Lq regularity and the Lp-Lq decay estimates to the linearized problem.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11010181