Coded excitation speeds up the detection of the fundamental flexural guided wave in coated tubes

The fundamental flexural guided wave (FFGW) permits ultrasonic assessment of the wall thickness of solid waveguides, such as tubes or, e.g., long cortical bones. Recently, an optical non-contact method was proposed for ultrasound excitation and detection with the aim of facilitating the FFGW recepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-09, Vol.6 (9), p.095001-095001-8
Hauptverfasser: Song, Xiaojun, Moilanen, Petro, Zhao, Zuomin, Ta, Dean, Pirhonen, Jalmari, Salmi, Ari, Hæeggström, Edward, Myllylä, Risto, Timonen, Jussi, Wang, Weiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fundamental flexural guided wave (FFGW) permits ultrasonic assessment of the wall thickness of solid waveguides, such as tubes or, e.g., long cortical bones. Recently, an optical non-contact method was proposed for ultrasound excitation and detection with the aim of facilitating the FFGW reception by suppressing the interfering modes from the soft coating. This technique suffers from low SNR and requires iterative physical scanning across the source-receiver distance for 2D-FFT analysis. This means that SNR improvement achieved by temporal averaging becomes time-consuming (several minutes) which reduces the applicability of the technique, especially in time-critical applications such as clinical quantitative ultrasound. To achieve sufficient SNR faster, an ultrasonic excitation by a base-sequence-modulated Golay code (BSGC, 64-bit code pair) on coated tube samples (1-5 mm wall thickness and 5 mm soft coating layer) was used. This approach improved SNR by 21 dB and speeded up the measurement by a factor of 100 compared to using a classical pulse excitation with temporal averaging. The measurement now took seconds instead of minutes, while the ability to determine the wall thickness of the phantoms was maintained. The technique thus allows rapid noncontacting assessment of the wall thickness in coated solid tubes, such as the human bone.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4962400