Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan
The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circulation dysfunction in neurodegenerative conditions. However, methods for routinely...
Gespeichert in:
Veröffentlicht in: | Fluids and barriers of the CNS 2024-02, Vol.21 (1), p.21-21, Article 21 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circulation dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume are suboptimal and require technical improvements and validation. Here, we propose three deep learning models that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics and changes across the adult lifespan.
Fully convolutional neural networks were trained from 3D T
-weighted, 3D T
-weighted, and 2D T
-weighted FLAIR MRI using gold-standard manual segmentations in control and neurodegenerative participants across the lifespan (n = 50; age = 21-85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve (AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon tests (significance criteria: p |
---|---|
ISSN: | 2045-8118 2045-8118 |
DOI: | 10.1186/s12987-024-00525-9 |