Benchmarking on offline Handwritten Tamil Character Recognition using convolutional neural networks

Convolutional Neural Networks (CNN) are playing a vital role nowadays in every aspect of computer vision applications. In this paper we have used the state of the art CNN in recognizing handwritten Tamil characters in offline mode. CNNs differ from traditional approach of Handwritten Tamil Character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of King Saud University. Computer and information sciences 2022-04, Vol.34 (4), p.1183-1190
Hauptverfasser: Kavitha, B.R., Srimathi, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional Neural Networks (CNN) are playing a vital role nowadays in every aspect of computer vision applications. In this paper we have used the state of the art CNN in recognizing handwritten Tamil characters in offline mode. CNNs differ from traditional approach of Handwritten Tamil Character Recognition (HTCR) in extracting the features automatically. We have used an isolated handwritten Tamil character dataset developed by HP Labs India. We have developed a CNN model from scratch by training the model with the Tamil characters in offline mode and have achieved good recognition results on both the training and testing datasets. This work is an attempt to set a benchmark for offline HTCR using deep learning techniques. This work have produced a training accuracy of 95.16% which is far better compared to the traditional approaches.
ISSN:1319-1578
2213-1248
DOI:10.1016/j.jksuci.2019.06.004