Predicting compound activity from phenotypic profiles and chemical structures

Predicting assay results for compounds virtually using chemical structures and phenotypic profiles has the potential to reduce the time and resources of screens for drug discovery. Here, we evaluate the relative strength of three high-throughput data sources—chemical structures, imaging (Cell Painti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-04, Vol.14 (1), p.1967-11, Article 1967
Hauptverfasser: Moshkov, Nikita, Becker, Tim, Yang, Kevin, Horvath, Peter, Dancik, Vlado, Wagner, Bridget K., Clemons, Paul A., Singh, Shantanu, Carpenter, Anne E., Caicedo, Juan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting assay results for compounds virtually using chemical structures and phenotypic profiles has the potential to reduce the time and resources of screens for drug discovery. Here, we evaluate the relative strength of three high-throughput data sources—chemical structures, imaging (Cell Painting), and gene-expression profiles (L1000)—to predict compound bioactivity using a historical collection of 16,170 compounds tested in 270 assays for a total of 585,439 readouts. All three data modalities can predict compound activity for 6–10% of assays, and in combination they predict 21% of assays with high accuracy, which is a 2 to 3 times higher success rate than using a single modality alone. In practice, the accuracy of predictors could be lower and still be useful, increasing the assays that can be predicted from 37% with chemical structures alone up to 64% when combined with phenotypic data. Our study shows that unbiased phenotypic profiling can be leveraged to enhance compound bioactivity prediction to accelerate the early stages of the drug-discovery process. Experimental assays are used to determine if compounds cause a desired activity in cells. Here the authors demonstrate that computational methods can predict compound bioactivity given their chemical structure, imaging and gene expression data from historic screening libraries.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37570-1