Modeling group heteroscedasticity in single-cell RNA-seq pseudo-bulk data

Group heteroscedasticity is commonly observed in pseudo-bulk single-cell RNA-seq datasets and its presence can hamper the detection of differentially expressed genes. Since most bulk RNA-seq methods assume equal group variances, we introduce two new approaches that account for heteroscedastic groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2023-05, Vol.24 (1), p.107-107, Article 107
Hauptverfasser: You, Yue, Dong, Xueyi, Wee, Yong Kiat, Maxwell, Mhairi J, Alhamdoosh, Monther, Smyth, Gordon K, Hickey, Peter F, Ritchie, Matthew E, Law, Charity W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Group heteroscedasticity is commonly observed in pseudo-bulk single-cell RNA-seq datasets and its presence can hamper the detection of differentially expressed genes. Since most bulk RNA-seq methods assume equal group variances, we introduce two new approaches that account for heteroscedastic groups, namely voomByGroup and voomWithQualityWeights using a blocked design (voomQWB). Compared to current gold-standard methods that do not account for group heteroscedasticity, we show results from simulations and various experiments that demonstrate the superior performance of voomByGroup and voomQWB in terms of error control and power when group variances in pseudo-bulk single-cell RNA-seq data are unequal.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-023-02949-2