Properties of Various Entropies of Gaussian Distribution and Comparison of Entropies of Fractional Processes

We consider five types of entropies for Gaussian distribution: Shannon, Rényi, generalized Rényi, Tsallis and Sharma–Mittal entropy, establishing their interrelations and their properties as the functions of parameters. Then, we consider fractional Gaussian processes, namely fractional, subfractiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2023-10, Vol.12 (11), p.1026
Hauptverfasser: Malyarenko, Anatoliy, Mishura, Yuliya, Ralchenko, Kostiantyn, Rudyk, Yevheniia Anastasiia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider five types of entropies for Gaussian distribution: Shannon, Rényi, generalized Rényi, Tsallis and Sharma–Mittal entropy, establishing their interrelations and their properties as the functions of parameters. Then, we consider fractional Gaussian processes, namely fractional, subfractional, bifractional, multifractional and tempered fractional Brownian motions, and compare the entropies of one-dimensional distributions of these processes.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms12111026