Plant-microorganism-soil interaction under long-term low-dose ionizing radiation

As the environmental nuclear radiation pollution caused by nuclear-contaminated water discharge and other factors intensifies, more plant-microorganism-soil systems will be under long-term low-dose ionizing radiation (LLR). However, the regulatory mechanisms of the plant-microorganism-soil system un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2024-01, Vol.14, p.1331477
Hauptverfasser: Zeng, Guoqiang, Wen, Yingzi, Luo, Chuyang, Zhang, Yihong, Li, Fei, Xiong, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the environmental nuclear radiation pollution caused by nuclear-contaminated water discharge and other factors intensifies, more plant-microorganism-soil systems will be under long-term low-dose ionizing radiation (LLR). However, the regulatory mechanisms of the plant-microorganism-soil system under LLR are still unclear. In this study, we study a system that has been stably exposed to low-dose ionizing radiation for 10 years and investigate the response of the plant-microorganism-soil system to LLR based on the decay of the absorbed dose rate with distance. The results show that LLR affects the carbon and nitrogen migration process between plant-microorganism-soil through the "symbiotic microbial effect." The increase in the intensity of ionizing radiation led to a significant increase in the relative abundance of symbiotic fungi, such as Ectomycorrhizal fungi and Rhizobiales, which is accompanied by a significant increase in soil lignin peroxidase (LiP) activity, the C/N ratio, and C%. Meanwhile, enhanced radiation intensity causes adaptive changes in the plant functional traits. This study demonstrates that the "symbiotic microbial effect" of plant-microorganism-soil systems is an important process in terrestrial ecosystems in response to LLR.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2023.1331477