Impact of Land Use/Land Cover Change on Landslide Susceptibility in Rangamati Municipality of Rangamati District, Bangladesh
Landslide susceptibility depends on various causal factors such as geology, land use/land cover (LULC), slope, and elevation. Unlike other factors that are relatively stable over time, LULC is a dynamic factor associated with human activities. This study evaluates the impact of LULC change on landsl...
Gespeichert in:
Veröffentlicht in: | ISPRS international journal of geo-information 2022-02, Vol.11 (2), p.89 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Landslide susceptibility depends on various causal factors such as geology, land use/land cover (LULC), slope, and elevation. Unlike other factors that are relatively stable over time, LULC is a dynamic factor associated with human activities. This study evaluates the impact of LULC change on landslide susceptibility in the Rangamati municipality of Rangamati district, Bangladesh, based on three LULC scenarios—the existing (2018) LULC, the proposed LULC (proposed in 2010, but not yet implemented), and the simulated LULC of 2028—using artificial neural network (ANN)-based cellular automata. The random forest model was used for landslide susceptibility mapping. The model showed good accuracy for all three LULC scenarios (existing: 82.7%; proposed: 81.4%; and 2028: 78.3%) and strong positive correlations (>0.8) between different landslide susceptibility maps. LULC is either the third or fourth most important factor in these scenarios, suggesting that is has a moderate impact on landslide susceptibility. Future LULC changes will likely increase landslide susceptibility, with up to 14.5% increases in the high susceptibility zone for both the proposed and simulated LULC scenarios. These findings may help policymakers carry out proper urban planning and highlight the importance of considering landslide susceptibility in LULC planning. |
---|---|
ISSN: | 2220-9964 2220-9964 |
DOI: | 10.3390/ijgi11020089 |