Plant-based calcium silicate from rice husk ash: A green adsorbent for free fatty acid recovery from waste frying oil

Driven by the urgent need for a solution to tackle the surge of rice husk (RH) and waste frying oil (WFO) waste accumulation at a global scale, this report highlights the use of calcium silicates (CS) extracted from acid-pre-treated rice husk ash (RHA) for free fatty acid (FFA) removal from WFO as c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-02, Vol.10 (4), p.e26591-e26591, Article e26591
Hauptverfasser: Zainal, Zainor Syahira, Hoo, Pengyong, Ahmad, Abdul Latif, Abdullah, Ahmad Zuhairi, Ng, Qihwa, Shuit, Siewhoong, Enche Ab Rahim, Siti Kartini, Andas, Jeyashelly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Driven by the urgent need for a solution to tackle the surge of rice husk (RH) and waste frying oil (WFO) waste accumulation at a global scale, this report highlights the use of calcium silicates (CS) extracted from acid-pre-treated rice husk ash (RHA) for free fatty acid (FFA) removal from WFO as conventional RHA shows limited FFA adsorption performance. A novel alkaline earth silicate extraction method from acid-pre-treated RHA was outlined. The structural and behavioural attributes of the synthesised CS were identified through BET, SEM-EDS, and XRD analyses and compared to those of RHA. Notable morphology and structural modification were determined, including reducing specific surface areas, mitigating from amorphous to crystalline structure with regular geometric forms, and detecting Si–O–Ca functional groups exclusive to CS adsorbents. A comparison study showed superior lauric acid (LA) adsorption performance by CS absorbents over acid-pre-treated RHA, with a significant increase from 0.0831 ± 0.0004 mmol LA/g to 2.5808 ± 0.0011 mmol LA/g after 60 min. Recognised as the best-performing CS adsorbent, CS-1.0 was used for further investigations on the effect of dosage, LA concentration, and temperature for efficient LA adsorption, with up to 100% LA removal and 5.6712 ± 0.0016 mmol LA/g adsorption capacity. The adsorption isotherm and kinetic studies showed LA adsorption onto CS-1.0 followed Freundlich isotherm with KF = 0.0598 mmol(1-1/n) L(1/n) g−1 & Qe,cal = 3.1696 mmol g−1 and intraparticle diffusion model with kid = 0.1250 mmol g−1 min0.5 & Ci = 0.9625 mmol g−1, indicating rapid initial adsorption and involvement of carboxylate end of LA and the calcium ions on the CS-1.0 in the rate-limiting step. The high equilibrium adsorption capacity and LA adsorption rate indicated that the proposed CS-1.0 adsorbent has excellent potential to recover FFA from WFO effectively. [Display omitted] •Addresses FFA removal using acid-pre-treated RHA-extracted calcium silicates.•Novel alkaline earth silicate method reveals potential for efficient LA adsorption.•Analyses confirmed successful highly purified calcium silicate formation.•CS-1.0 is the best-performing adsorbent with high LA removal and adsorption capacity.•Adsorption follows the interparticle diffusion model with the Freundlich adsorption isotherm.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e26591