Cesàro and Abel ergodic theorems for integrated semigroups
Let { )} be an integrated semigroup of bounded linear operators on the Banach space X into itself and let be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of ) converge uniformly on B(X). More precisely, we show that the...
Gespeichert in:
Veröffentlicht in: | Concrete operators (Warsaw, Poland) Poland), 2021-10, Vol.8 (1), p.135-149 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {
)}
be an integrated semigroup of bounded linear operators on the Banach space X into itself and let
be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of
) converge uniformly on B(X). More precisely, we show that the Abel average of
) converges uniformly if and only if X = R(
) ⊕ N(
), if and only if R(
) is closed for some integer
and ∥
,
) ∥ → 0 as
→ 0
, where R(
), N(
) and
,
), be the range, the kernel, the resolvent function of
, respectively. Furthermore, we prove that if
)/
→ 0 as
→ 1, then the Cesàro mean of
) converges uniformly if and only if the Abel average of
) is also converges uniformly. |
---|---|
ISSN: | 2299-3282 2299-3282 |
DOI: | 10.1515/conop-2020-0119 |