Cesàro and Abel ergodic theorems for integrated semigroups

Let { )} be an integrated semigroup of bounded linear operators on the Banach space X into itself and let be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of ) converge uniformly on B(X). More precisely, we show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concrete operators (Warsaw, Poland) Poland), 2021-10, Vol.8 (1), p.135-149
1. Verfasser: Barki, Fatih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let { )} be an integrated semigroup of bounded linear operators on the Banach space X into itself and let be their generator. In this paper, we consider some necessary and sufficient conditions for the Cesàro mean and the Abel average of ) converge uniformly on B(X). More precisely, we show that the Abel average of ) converges uniformly if and only if X = R( ) ⊕ N( ), if and only if R( ) is closed for some integer and ∥ , ) ∥ → 0 as → 0 , where R( ), N( ) and , ), be the range, the kernel, the resolvent function of , respectively. Furthermore, we prove that if )/ → 0 as → 1, then the Cesàro mean of ) converges uniformly if and only if the Abel average of ) is also converges uniformly.
ISSN:2299-3282
2299-3282
DOI:10.1515/conop-2020-0119