A Bayesian Network Decision Support Tool for Low Back Pain Using a RAND Appropriateness Procedure: Proposal and Internal Pilot Study

Low back pain (LBP) is an increasingly burdensome condition for patients and health professionals alike, with consistent demonstration of increasing persistent pain and disability. Previous decision support tools for LBP management have focused on a subset of factors owing to time constraints and ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JMIR research protocols 2021-01, Vol.10 (1), p.e21804-e21804
Hauptverfasser: Hill, Adele, Joyner, Christopher H, Keith-Jopp, Chloe, Yet, Barbaros, Tuncer Sakar, Ceren, Marsh, William, Morrissey, Dylan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low back pain (LBP) is an increasingly burdensome condition for patients and health professionals alike, with consistent demonstration of increasing persistent pain and disability. Previous decision support tools for LBP management have focused on a subset of factors owing to time constraints and ease of use for the clinician. With the explosion of interest in machine learning tools and the commitment from Western governments to introduce this technology, there are opportunities to develop intelligent decision support tools. We will do this for LBP using a Bayesian network, which will entail constructing a clinical reasoning model elicited from experts. This paper proposes a method for conducting a modified RAND appropriateness procedure to elicit the knowledge required to construct a Bayesian network from a group of domain experts in LBP, and reports the lessons learned from the internal pilot of the procedure. We propose to recruit expert clinicians with a special interest in LBP from across a range of medical specialties, such as orthopedics, rheumatology, and sports medicine. The procedure will consist of four stages. Stage 1 is an online elicitation of variables to be considered by the model, followed by a face-to-face workshop. Stage 2 is an online elicitation of the structure of the model, followed by a face-to-face workshop. Stage 3 consists of an online phase to elicit probabilities to populate the Bayesian network. Stage 4 is a rudimentary validation of the Bayesian network. Ethical approval has been obtained from the Research Ethics Committee at Queen Mary University of London. An internal pilot of the procedure has been run with clinical colleagues from the research team. This showed that an alternating process of three remote activities and two in-person meetings was required to complete the elicitation without overburdening participants. Lessons learned have included the need for a bespoke online elicitation tool to run between face-to-face meetings and for careful operational definition of descriptive terms, even if widely clinically used. Further, tools are required to remotely deliver training about self-identification of various forms of cognitive bias and explain the underlying principles of a Bayesian network. The use of the internal pilot was recognized as being a methodological necessity. We have proposed a method to construct Bayesian networks that are representative of expert clinical reasoning for a musculoskeletal condition in thi
ISSN:1929-0748
1929-0748
DOI:10.2196/21804