Reducing Chaos and Bifurcations in Newton-Type Methods

We study the dynamics of some Newton-type iterative methods when they are applied of polynomials degrees two and three. The methods are free of high-order derivatives which are the main limitation of the classical high-order iterative schemes. The iterative schemes consist of several steps of damped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.577-586-959
Hauptverfasser: Amat, S., Busquier, S., Magreñán, Á. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the dynamics of some Newton-type iterative methods when they are applied of polynomials degrees two and three. The methods are free of high-order derivatives which are the main limitation of the classical high-order iterative schemes. The iterative schemes consist of several steps of damped Newton's method with the same derivative. We introduce a damping factor in order to reduce the bad zones of convergence. The conclusion is that the damped schemes become real alternative to the classical Newton-type method since both chaos and bifurcations of the original schemes are reduced. Therefore, the new schemes can be utilized to obtain good starting points for the original schemes.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/726701