Artificial neural networks discriminate lettuce seeds with different levels of thermoinhibition

The thermoinhibition of lettuce seed germination causes important losses for producers, who do not have thermotolerant commercial cultivars. One of the obstacles has been the scarcity of optimizing techniques capable of efficiently discriminating thermotolerant and thermosensitive cultivars. The aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of seed science 2023-01, Vol.45
Hauptverfasser: Catão, Hugo Cesar Rodrigues Moreira, Cardoso, Daniel Bonifácio Oliveira, Maciel, Gabriel Mascarenhas, Gomes, Luiz Antonio Augusto, Siquieroli, Ana Carolina Silva, Neves, Flávia de Oliveira Borges Costa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermoinhibition of lettuce seed germination causes important losses for producers, who do not have thermotolerant commercial cultivars. One of the obstacles has been the scarcity of optimizing techniques capable of efficiently discriminating thermotolerant and thermosensitive cultivars. The aim of this work was to evaluate the use of neural networks to discriminate different levels of thermoinhibition in lettuce seeds. Seeds of 18 cultivars were evaluated for thermoinhibition considering the characteristics of the first and last germination count and germination speed index, in seeds subjected to temperatures of 20, 25, 30 and 35 °C. The remaining seeds, which did not germinate, were subjected to the tetrazolium test. Analyses were performed immediately after seed harvesting and repeated after six months of storage. Discriminant analysis was performed and the Kohonen’s Self-Organizing Map (SOM) was created using Artificial Neural Networks (ANNs). Neural networks discriminate lettuce cultivars and organizes them in terms of seed thermoinhibition tolerance through Kohonen’s Self-Organizing Map. Discriminant analysis consistently identifies the Everglades and Luiza genotypes as tolerant to thermoinhibition. Resumo: A termoinibição causa perdas importantes para os produtores, os quais não dispõem de cultivares comerciais com sementes termotolerantes. Há escassez de técnicas otimizadoras capazes de discriminar cultivares termotolerantes e termosensíveis com eficiência. Objetivou-se avaliar o uso de redes neurais para discriminar diferentes níveis de termoinibição em sementes de alface. Foram avaliadas sementes de 18 cultivares quanto à termoinibição considerando às características de primeira e última contagem de germinação e índice de velocidade de germinação, em sementes submetidas às temperaturas de 20, 25, 30 e 35 °C. As sementes remanescentes, que não germinaram, foram submetidas ao teste de tetrazólio. As análises foram realizadas imediatamente após a colheita das sementes e repetidas após seis meses de armazenamento. Uma análise discriminante e o Mapa Auto-Organizável de Kohonen (SOM) por Redes Neurais Artificiais (RNA’s) foram realizados. As redes neurais discriminam as cultivares de alface e as organiza quanto a tolerância a termoinibição das sementes por meio do Mapa Auto-Organizável de Kohonen. A análise discriminante indentifica de maneira coerente o genótipo Everglades e Luiza como tolerantes a termoinibição.
ISSN:2317-1537
2317-1545
2317-1545
DOI:10.1590/2317-1545v45255086