High throughput estimates of Wolbachia, Zika and chikungunya infection in Aedes aegypti by near-infrared spectroscopy to improve arbovirus surveillance

Deployment of Wolbachia to mitigate dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) transmission is ongoing in 12 countries. One way to assess the efficacy of Wolbachia releases is to determine invasion rates within the wild population of Aedes aegypti following their release. Herein we evaluated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-01, Vol.4 (1), p.67-67, Article 67
Hauptverfasser: Santos, Lilha M. B., Mutsaers, Mathijs, Garcia, Gabriela A., David, Mariana R., Pavan, Márcio G., Petersen, Martha T., Corrêa-Antônio, Jessica, Couto-Lima, Dinair, Maes, Louis, Dowell, Floyd, Lord, Anton, Sikulu-Lord, Maggy, Maciel-de-Freitas, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deployment of Wolbachia to mitigate dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) transmission is ongoing in 12 countries. One way to assess the efficacy of Wolbachia releases is to determine invasion rates within the wild population of Aedes aegypti following their release. Herein we evaluated the accuracy, sensitivity and specificity of the Near Infrared Spectroscopy (NIRS) in estimating the time post death, ZIKV-, CHIKV-, and Wolbachia -infection in trapped dead female Ae. aegypti mosquitoes over a period of 7 days. Regardless of the infection type, time post-death of mosquitoes was accurately predicted into four categories (fresh, 1 day old, 2–4 days old and 5–7 days old). Overall accuracies of 93.2, 97 and 90.3% were observed when NIRS was used to detect ZIKV, CHIKV and Wolbachia in dead Ae. aegypti female mosquitoes indicating NIRS could be potentially applied as a rapid and cost-effective arbovirus surveillance tool. However, field data is required to demonstrate the full capacity of NIRS for detecting these infections under field conditions. Santos et al. demonstrate that the Near Infrared Spectroscopy (NIRS) can accurately estimate the death time of trapped female Aedes aegypti and vector infection with Zika virus, Chikungunya virus, or Wolbachia in a 7-day trapping period. This study suggests that NIRS may provide an accurate and inexpensive tool that improves arbovirus surveillance systems.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-020-01601-0