Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins

Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recogn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-02, Vol.15 (1), p.1813-1813, Article 1813
Hauptverfasser: Callahan, Alex J., Gandhesiri, Satish, Travaline, Tara L., Reja, Rahi M., Lozano Salazar, Lia, Hanna, Stephanie, Lee, Yen-Chun, Li, Kunhua, Tokareva, Olena S., Swiecicki, Jean-Marie, Loas, Andrei, Verdine, Gregory L., McGee, John H., Pentelute, Bradley L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Widespread adoption of mirror-image biological systems presents difficulties in accessing the requisite D-protein substrates. In particular, mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders with potentially unique recognition modes but is hindered by the individualized optimization required for D-protein chemical synthesis. We demonstrate a general mirror-image phage display pipeline that utilizes automated flow peptide synthesis to prepare D-proteins in a single run. With this approach, we prepare and characterize 12 D-proteins – almost one third of all reported D-proteins to date. With access to mirror-image protein targets, we describe the successful discovery of six macrocyclic D-peptide binders: three to the oncoprotein MDM2, and three to the E3 ubiquitin ligase CHIP. Reliable production of mirror-image proteins can unlock the full potential of D-peptide drug discovery and streamline the study of mirror-image biology more broadly. Mirror-image phage display has the potential for high-throughput generation of biologically stable macrocyclic D-peptide binders but is hindered by the optimization required for D-protein chemical synthesis. Here, the authors report a general mirror-image phage display pipeline based on automated flow peptide synthesis and use it to prepare and characterize 12 L/D-protein pairs.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-45634-z