Study on dynamic simulation of hinged flap mechanism considering wear evolution

Due to the significant differences in aerodynamic loads offlaps at different positions, there are also significant differences in the loads borne by bearings at different flap angles. This leads to inconsistent wear depth of bearings at different angles. Therefore, the method of introducing uniform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Xibei Gongye Daxue Xuebao 2024-04, Vol.42 (2), p.222-231
Hauptverfasser: FENG, Yunwen, TANG, Jiaqiang, XUE, Xiaofeng, LI, Shuai, CHEN, Xianmin
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the significant differences in aerodynamic loads offlaps at different positions, there are also significant differences in the loads borne by bearings at different flap angles. This leads to inconsistent wear depth of bearings at different angles. Therefore, the method of introducing uniform wear depth is difficult to apply to the dynamic characteristics analysis of flaps. To address this issue, a dynamic modeling method based on the least squares method is proposed. Firstly, based on the connection characteristics of the flap surface, the C-B method is used to make it flexible, and the RBE2 element is used to establish a rigid flexible coupling dynamic model. On this basis, combining with UAMP, DISP and UMESHMOTION subroutines, the uneven wear data of hinge bearings are obtained by using the wear evolution simulation. At the same time, the function relation among the wear depth, flap deflection angle, and friction coefficient is established via least squares fitting. Finally, the function relation is updated to the rigid-flexible coupling dynamic model by the offset of the hinge bearing center point and the friction coefficient of the ball pair, so as to obtain the dynamic response of the flap under the influence of wear, which verifies the applicability and effectiveness of the method. As wear progresses, the coaxiality of the inner and outer bearing shafts of the flaps decreases gradually, and the driving torque on the inner and outer sides increases accordingly. The maximum increase is 15.08%. This method can provide some support for designing the flap mechanism and bearing selection. 不同卡位的襟翼气动载荷差别很大, 使得轴承在不同襟翼偏角下所承受载荷也存在明显差异, 这导致在不同角度位置的轴承磨损深度不一致。因此, 引入均匀磨损深度的方法难以适用于襟翼的动力学特性分析。为解决这一问题, 提出了一种基于最小二乘法的动力学建模方法。根据襟翼翼面的连接特点利用C-B法对其进行柔性化, 并采用RBE2单元建立刚柔耦合动力学模型。联合UAMP、DISP、UMESHMOTION子程序进行磨损演化仿真,获取铰链轴承的非均匀磨损数据, 同时通过最小二乘拟合建立磨损深度和襟翼偏角角度以及摩擦因数的映射关系。将该映射关系以铰链轴承中心点的偏移量和轴承摩擦因数的方式更新刚柔耦合动力学模型, 以获取在磨损影响下的襟翼机构动力学响应, 验证了方法的适用性和有效性。结果表明, 随着磨损的进行,襟翼内外侧轴承转轴同轴度逐渐降低, 内外侧驱动力矩随之增加, 增加幅度最大为15.08%。该方法可为襟翼机构的设计及轴承选型提供一定支持。
ISSN:1000-2758
2609-7125
DOI:10.1051/jnwpu/20244220222