Superlattices, Bonding-Antibonding, Fermi Surface Nesting, and Superconductivity
Raman and synchrotron THz absorption spectral measurements on MgB2 provide experimental evidence for electron orbital superlattices. In earlier work, we have detected THz spectra that show superlattice absorption peaks with low wavenumbers, for which spectral density evolves and intensifies after co...
Gespeichert in:
Veröffentlicht in: | Condensed matter 2023-09, Vol.8 (3), p.72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Raman and synchrotron THz absorption spectral measurements on MgB2 provide experimental evidence for electron orbital superlattices. In earlier work, we have detected THz spectra that show superlattice absorption peaks with low wavenumbers, for which spectral density evolves and intensifies after cooling below the superconducting transition temperature for MgB2. In this work, we show how these observations indicate a direct connection to superconducting properties and mechanisms. Bonding–antibonding orbital character is identified in calculated electronic band structures and Fermi surfaces consistent with superlattice structures along the c-axis. DFT calculations show that superlattice folding of reciprocal space generates Brillouin zone boundary reflections, Umklapp processes, and substantially enhances nesting relationships. Tight binding equations are compared with expected charge density waves from nesting relationships and adjusted to explicitly accommodate these linked processes. Systematic analysis of electronic band structures and Fermi surfaces allows for direct identification of Cooper pairing and the superconducting gap, particularly when the k-grid resolution of a calculation is suitably calibrated to structural parameters. Thus, we detail a robust and accurate DFT re-interpretation of BCS superconductivity for MgB2. |
---|---|
ISSN: | 2410-3896 2410-3896 |
DOI: | 10.3390/condmat8030072 |