Simulation of processes of electric power consumption for traction in conditions of changing the traffic schedule of freight trains at the electrified sections

The paper is devoted to the solution of the problem of increasing the energy efficiency of the transportation process on the electrified sections of the railways. The task is considered in the aspect of energy efficiency when comparing forecasted traffic schedules with each other and assessing the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2018-01, Vol.239, p.1034
Hauptverfasser: Nezevak, Vladislav, Sidorova, Elena, Demin, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is devoted to the solution of the problem of increasing the energy efficiency of the transportation process on the electrified sections of the railways. The task is considered in the aspect of energy efficiency when comparing forecasted traffic schedules with each other and assessing the effectiveness of implementing the forecasted and executed schedule of train traffic at the section. The basis for the calculations is a simulation modeling of the interaction between the electric rolling stock and the traction power supply system at the sections with different track profiles. Simulation modeling was carried out for the conditions of changing the traffic schedule of freight trains and maintaining the amount of traffic and the amount of work unchanged. The results of the change in the amount of electric power for traction and the level of unbalance of energy for existing sections of constant and alternating current are used as the basis for construction of approximating models, in the function of which regression and neural network models are used. Comparison of the results of approximation of the considered models for the estimation of changes in amount of electric power for traction and unbalance is made. Models with the best results of approximation to simulation results are determined.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201823901034