“Spectral Method” for Determining a Kernel of the Fredholm Integral Equation of the First Kind of Convolution Type and Suppressing the Gibbs Effect

A set of one-dimensional (as well as one two-dimensional) Fredholm integral equations (IEs) of the first kind of convolution type is solved. The task for solving these equations is ill-posed (first of all, unstable); therefore, the Wiener parametric filtering method (WPFM) and the Tikhonov regulariz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-01, Vol.12 (1), p.13
Hauptverfasser: Sizikov, Valery, Rushchenko, Nina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A set of one-dimensional (as well as one two-dimensional) Fredholm integral equations (IEs) of the first kind of convolution type is solved. The task for solving these equations is ill-posed (first of all, unstable); therefore, the Wiener parametric filtering method (WPFM) and the Tikhonov regularization method (TRM) are used to solve them. The variant is considered when a kernel of the integral equation (IE) is unknown or known inaccurately, which generates a significant error in the solution of IE. The so-called “spectral method” is being developed to determine the kernel of an integral equation based on the Fourier spectrum, which leads to a decrease of the error in solving the IE and image improvement. Moreover, the authors also propose a method for diffusing the solution edges to suppress the possible Gibbs effect (ringing-type distortions). As applications, the problems for processing distorted (smeared, defocused, noisy, and with the Gibbs effect) images are considered. Numerical examples are given to illustrate the use of the “spectral method” to enhance the accuracy and stability of processing distorted images through their mathematical and computer processing.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12010013