Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree

Consider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarkés generalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-08, Vol.8 (8), p.1262
Hauptverfasser: Dzedzej, Zdzisław, Gzella, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarkés generalized gradient of f. This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient mappings.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8081262