Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four-component reactions
A new type of magnetically-separable nanocatalyst was prepared through the immobilization of phosphomolybdic acid (H3PMo12O40) in 10–30wt.% on the surface of core-shell zirconia-coated magnetite nanoparticle (nano-Fe3O4@ZrO2). The developed heterogeneous nano-sized acid catalyst named nano-Fe3O4@ZrO...
Gespeichert in:
Veröffentlicht in: | Arabian journal of chemistry 2020-01, Vol.13 (1), p.227-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new type of magnetically-separable nanocatalyst was prepared through the immobilization of phosphomolybdic acid (H3PMo12O40) in 10–30wt.% on the surface of core-shell zirconia-coated magnetite nanoparticle (nano-Fe3O4@ZrO2). The developed heterogeneous nano-sized acid catalyst named nano-Fe3O4@ZrO2 supported PMA (or n-Fe3O4@ZrO2/PMA) was characterized using several techniques such as FT-IR, XRD, FE-SEM, VSM, EDX, TEM and TGA. The characterization data derived from FT-IR spectroscopy exhibited that H3PMo12O40 species on the support retained their Keggin structures. Additionally, the potentiometric titration with n-butylamine was employed to measure the acidity content of the as-obtained catalyst. Surprisingly, this novel active solid acid catalyst displayed to have a higher number of surface active sites compared to its homogeneous analogues. Besides, the catalytic activity of the catalyst was evaluated in multicomponent reactions (MRCs) for the rapid and efficient one-pot synthesis of 2, 4, 5-trisubstituted and 1, 2, 4, 5-tetrasubstituted imidazoles in high yields and selectivity. The sample of 20wt.% displayed higher acidity content which led to its enhanced activity in the catalytic transformation. Moreover, the catalyst could be easily reused without deactivation after five runs, which made it a promising catalyst for practical and large-scale applications. This outstanding reusability was ascribed to the strong attachment of PMA molecules on the n-Fe3O4@ZrO2 support material. |
---|---|
ISSN: | 1878-5352 1878-5379 |
DOI: | 10.1016/j.arabjc.2017.04.004 |