Parametric excitation and squeezing in a many-body spinor condensate
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-part...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-04, Vol.7 (1), p.11233-11233, Article 11233 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states.
Ultracold atomic gases with collisional interactions allow the exploration of quantum many-body physics. Here, the authors vary over time the contributions to the interaction energy to coherently control the spin state of an atomic Bose gas, thereby implementing a truly many-body control scheme. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms11233 |