The Effects of Hydrogen Annealing on Carbon Nanotube Field-Effect Transistors

We have systematically investigated the effects of hydrogen annealing on Ni- and Al-contacted carbon nanotube field-effect transistors (CNTFETs), whose work functions have not been affected by hydrogen annealing. Measured results show that the electronic properties of single-walled carbon nanotubes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-09, Vol.11 (10), p.2481
Hauptverfasser: Uchino, Takashi, Ayre, Greg N, Smith, David C, Hutchison, John L, de Groot, C H, Ashburn, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have systematically investigated the effects of hydrogen annealing on Ni- and Al-contacted carbon nanotube field-effect transistors (CNTFETs), whose work functions have not been affected by hydrogen annealing. Measured results show that the electronic properties of single-walled carbon nanotubes are modified by hydrogen adsorption. The Ni-contacted CNTFETs, which initially showed metallic behavior, changed their p-FET behavior with a high on-current over 10 µA after hydrogen annealing. The on-current of the as-made p-FETs is much improved after hydrogen annealing. The Al-contacted CNTFETs, which initially showed metallic behavior, showed unipolar p-FET behavior after hydrogen annealing. We analyzed the energy band diagrams of the CNTFETs to explain experimental results, finding that the electron affinity and the bandgap of single-walled carbon nanotubes changed after hydrogen annealing. These results are consistent with previously reported ab initio calculations.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11102481