Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites

Contaminated sites from electronic waste (e-waste) dismantling and coking plants feature high concentrations of heavy metals (HMs) and/or polycyclic aromatic hydrocarbons (PAHs) in soil. Mixed contamination (HMs + PAHs) hinders land reclamation and affects the microbial diversity and function of soi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and ecotechnology 2022-04, Vol.10, p.100169, Article 100169
Hauptverfasser: Yang, Zhen-Ni, Liu, Ze-Shen, Wang, Ke-Huan, Liang, Zong-Lin, Abdugheni, Rashidin, Huang, Ye, Wang, Run-Hua, Ma, Hong-Lin, Wang, Xiao-Kang, Yang, Mei-Ling, Zhang, Bing-Ge, Li, De-Feng, Jiang, Cheng-Ying, Corvini, Philippe F.-X., Liu, Shuang-Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Contaminated sites from electronic waste (e-waste) dismantling and coking plants feature high concentrations of heavy metals (HMs) and/or polycyclic aromatic hydrocarbons (PAHs) in soil. Mixed contamination (HMs + PAHs) hinders land reclamation and affects the microbial diversity and function of soil microbiomes. In this study, we analyzed HM and PAH contamination from an e-waste dismantling plant and a coking plant and evaluated the influences of HM and PAH contamination on soil microbiomes. It was noticed that HMs and PAHs were found in all sites, although the major contaminants of the e-waste dismantling plant site were HMs (such as Cu at 5,947.58 ± 433.44 mg kg−1, Zn at 4,961.38 ± 436.51 mg kg−1, and Mn at 2,379.07 ± 227.46 mg kg−1), and the major contaminants of the coking plant site were PAHs (such as fluorene at 11,740.06 ± 620.1 mg kg−1, acenaphthylene at 211.69 ± 7.04 mg kg−1, and pyrene at 183.14 ± 18.89 mg kg−1). The microbiomes (diversity and abundance) of all sites were determined via high-throughput sequencing of 16S rRNA genes, and redundancy analysis was conducted to investigate the relations between soil microbiomes and contaminants. The results showed that the microbiomes of the contaminated sites divergently responded to HMs and PAHs. The abundances of the bacterial genera Sulfuritalea, Pseudomonas, and Sphingobium were positively related to PAHs, while the abundances of the bacterial genera Bryobacter, Nitrospira, and Steroidobacter were positively related to HMs. This study promotes an understanding of how soil microbiomes respond to single and mixed contamination with HMs and PAHs. [Display omitted] •The microbiomes of soil contaminated by heavy metals and PAHs were investigated.•The e-waste dismantling plant sample had high concentrations of heavy metals.•The coking plant samples were characterized by high concentrations of PAHs.•Sulfuritalea, Pseudomonas and Sphingobium were abundant in soil with PAHs.•Bryobacter, Galiella and Nitrospira were abundant in heavy metal-rich soil.
ISSN:2666-4984
2096-9643
2666-4984
DOI:10.1016/j.ese.2022.100169