Therapeutic potential of a TrkB agonistic antibody for ischemic brain injury

The clinical trials employing neuroprotectants targeting single, early pathogenic mechanisms in stroke have so far been barely successful. We found in human postmortem stroke brains that in addition to apoptosis, necroptosis also contributed to neuronal damage. Thus, a new strategy targeting both me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of disease 2019-07, Vol.127, p.570-581
Hauptverfasser: Han, Fang, Guan, Xiaoming, Guo, Wei, Lu, Bai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The clinical trials employing neuroprotectants targeting single, early pathogenic mechanisms in stroke have so far been barely successful. We found in human postmortem stroke brains that in addition to apoptosis, necroptosis also contributed to neuronal damage. Thus, a new strategy targeting both mechanisms might be necessary. While brain-derived neurotrophic factor (BDNF) is a potent survival factor for neurons, its poor bioavailability including low diffusion rate and short half-life makes it unlikely a therapeutic agent. We recently developed a TrkB agonistic antibody (Ab4B19) that mimicked BDNF functionally but exhibited better physicochemical and pharmacological features. We showed that Ab4B19 halted neuronal death in vitro under multiple conditions that simulate ischemia/reperfusion injury, including oxygen-glucose deprivation (OGD), glutamate toxicity, oxidative stress and nutrient deprivation. In a rat model of ischemia/reperfusion, Ab4B19 suppressed both apoptosis and necroptosis, leading to a reduction in infarct volume and acceleration of functional recovery from sensorimotor impairments. In neurons derived from human embryonic stem cells (hESCs), Ab4B19 activated TrkB and its downstream signaling, and rescued neuronal death from OGD at a similar level as that in mouse neurons. Together, our study revealed necroptosis in human stroke brain, and demonstrated a BDNF-based strategy targeting both apoptosis and necroptosis for ischemic stroke treatment. •Necroptosis contributes to neural damages in both stroke animals and patients•Ab4B19, a TrkB agonistic antibody, halted neuronal death in ischemic culture models•In a rat MCAO model, Ab4B19 reduced infarct volume and rescued behavioral deficits•Ab4B19 suppressed both apoptotic and necroptotic signaling in vivo
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2019.04.009