Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu)
Local ischemia and defective osteogenesis are implicated in the progression of glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Recent studies have revealed that exosomes released from adipose-derived stem cells (ASCs) play important roles in ONFH therapy. The present study aime...
Gespeichert in:
Veröffentlicht in: | Stem cell research & therapy 2021-06, Vol.12 (1), p.331-331, Article 331 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Local ischemia and defective osteogenesis are implicated in the progression of glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Recent studies have revealed that exosomes released from adipose-derived stem cells (ASCs) play important roles in ONFH therapy. The present study aimed to investigate whether exosomes derived from miR-378-overexpressing ASCs (miR-378-ASCs-Exos) could promote angiogenesis and osteogenesis in GC-induced ONFH.
In vitro, we investigated the osteogenic potential of miR-378-ASCs-Exos on bone marrow stromal cells (BMSCs) by alkaline phosphatase staining and western blotting. The angiogenic effects of miR-378-ASCs-Exos on human umbilical vein endothelial cells (HUVECs) were examined by evaluating their proliferation, migration, and tube-forming analyses. We identified the underlying mechanisms of miR-378 in osteogenic and angiogenic regulation. In addition, an ONFH rat model was established to explore the effects of miR-378-ASCs-Exos through histological and immunohistochemical staining and micro-CT in vivo.
Administration of miR-378-ASCs-Exos improved the osteogenic and angiogenic potentials of BMSCs and HUVECs. miR-378 negatively regulated the suppressor of fused (Sufu) and activated Sonic Hedgehog (Shh) signaling pathway, and recombinant Sufu protein reduced the effects triggered by miR-378-ASCs-Exos. In vivo experiments indicated that miR-378-ASCs-Exos markedly accelerated bone regeneration and angiogenesis, which inhibited the progression of ONFH.
Our study indicated that miR-378-ASCs-Exos enhances osteogenesis and angiogenesis by targeting Sufu to upregulate the Shh signaling pathway, thereby attenuating GC-induced ONFH development. |
---|---|
ISSN: | 1757-6512 1757-6512 |
DOI: | 10.1186/s13287-021-02390-x |