Dissecting Source-Sink Relationship of Subtending Leaf for Yield and Fiber Quality Attributes in Upland Cotton (Gossypium hirsutum L.)

Photosynthesis as a source is a significant contributor to the reproductive sink affecting cotton yield and fiber quality. Moreover, carbon assimilation from subtending leaves adds up a significant proportion to the reproductive sink. Therefore, this study aimed to address the source-sink relationsh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2021-06, Vol.10 (6), p.1147
Hauptverfasser: Mangi, Naimatullah, Nazir, Mian Faisal, Wang, Xiaoyan, Iqbal, Muhammad Shahid, Sarfraz, Zareen, Jatoi, Ghulam Hussain, Mahmood, Tahir, Ma, Qifeng, Shuli, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photosynthesis as a source is a significant contributor to the reproductive sink affecting cotton yield and fiber quality. Moreover, carbon assimilation from subtending leaves adds up a significant proportion to the reproductive sink. Therefore, this study aimed to address the source-sink relationship of boll subtending leaf with fiber quality and yield related traits in upland cotton. A core collection of 355 upland cotton accessions was subjected to subtending leaf removal treatment effects across 2 years. The analysis of variance suggested a significant effect range in the source-sink relationship under subtending leaf removal effects at different growth stages. Further insight into the variation was provided by the correlation analysis and principal component analysis. A significant positive correlation between different traits was observed and the multivariate analysis including hierarchical clustering and principal component analysis (PCA) categorised germplasm accessions into three groups on the basis of four subtending leaf removal treatment effects across 2 years. A set of genotypes with the lowest and highest treatment effects has been identified. Selected accessions and the outcome of the current study may provide a basis for a further study to explore the molecular mechanism of source-sink relationship of boll subtending leaf and utilization of breeding programs focused on cotton improvement.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants10061147