A Thermal Model for Recuperative Heat Engines Operating with Dense Working Fluids
Currently, there is no commercially available technology for low temperature (below 100°C) heat conversion into mechanical or electrical energy. The Organic Rankine Cycle (ORC) is a typical technology for low temperature applications. However, ORC plants are rather complex and not economically sound...
Gespeichert in:
Veröffentlicht in: | Chemical engineering transactions 2022-11, Vol.96 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Currently, there is no commercially available technology for low temperature (below 100°C) heat conversion into mechanical or electrical energy. The Organic Rankine Cycle (ORC) is a typical technology for low temperature applications. However, ORC plants are rather complex and not economically sound for small-scale applications (40°C) heat conversion. The IE engine works under external heat supply, and thus, almost every type of heat source is accessible. In this work, a mathematical model for transient thermal simulation of recuperative displacer-type IE engines operating with dense working fluids is proposed. The model is based on Nusselt number correlations for the heat transfer prediction and is coupled to the REFPROP 9.1 database yielding thermophysical properties. The first results of a parametric study performed with two different working fluids, namely R134a and carbon dioxide, are presented to show the impact of different operating frequencies on the heat transfer characteristics. |
---|---|
ISSN: | 2283-9216 |
DOI: | 10.3303/CET2296030 |