Mixture Statistical Distribution Based Multiple Component Model for Target Detection in High Resolution SAR Imagery

This paper proposes an innovative Mixture Statistical Distribution Based Multiple Component (MSDMC) model for target detection in high spatial resolution Synthetic Aperture Radar (SAR) images. Traditional detection algorithms usually ignore the spatial relationship among the target’s components. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2017-11, Vol.6 (11), p.336
Hauptverfasser: He, Chu, Tu, Mingxia, Liu, Xinlong, Xiong, Dehui, Liao, Mingsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an innovative Mixture Statistical Distribution Based Multiple Component (MSDMC) model for target detection in high spatial resolution Synthetic Aperture Radar (SAR) images. Traditional detection algorithms usually ignore the spatial relationship among the target’s components. In the presented method, however, both the structural information and the statistical distribution are considered to better recognize the target. Firstly, the method based on compressed sensing reconstruction is used to recover the SAR image. Then, the multiple component model composed of a root filter and some corresponding part filters is applied to describe the structural information of the target. In the following step, mixture statistical distributions are utilised to discriminate the target from the background, and the Method of Logarithmic Cumulants (MoLC) based Expectation Maximization (EM) approach is adopted to estimate the parameters of the mixture statistical distribution model, which will be finally merged into the proposed MSDMC framework together with the multiple component model. In the experiment, the aeroplanes and the electrical power towers in TerraSAR-X SAR images are detected at three spatial resolutions. The results indicate that the presented MSDMC Model has potential for improving the detection performance compared with the state-of-the-art SAR target detection methods.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi6110336