An Ensemble Energy Consumption Forecasting Model Based on Spatial-Temporal Clustering Analysis in Residential Buildings

Due to the availability of smart metering infrastructure, high-resolution electric consumption data is readily available to study the dynamics of residential electric consumption at finely resolved spatial and temporal scales. Analyzing the electric consumption data enables the policymakers and buil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-06, Vol.14 (11), p.3020
Hauptverfasser: Khan, Anam-Nawaz, Iqbal, Naeem, Rizwan, Atif, Ahmad, Rashid, Kim, Do-Hyeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the availability of smart metering infrastructure, high-resolution electric consumption data is readily available to study the dynamics of residential electric consumption at finely resolved spatial and temporal scales. Analyzing the electric consumption data enables the policymakers and building owners to understand consumer’s demand-consumption behaviors. Furthermore, analysis and accurate forecasting of electric consumption are substantial for consumer involvement in time-of-use tariffs, critical peak pricing, and consumer-specific demand response initiatives. Alongside its vast economic and sustainability implications, such as energy wastage and decarbonization of the energy sector, accurate consumption forecasting facilitates power system planning and stable grid operations. Energy consumption forecasting is an active research area; despite the abundance of devised models, electric consumption forecasting in residential buildings remains challenging due to high occupant energy use behavior variability. Hence the search for an appropriate model for accurate electric consumption forecasting is ever continuing. To this aim, this paper presents a spatial and temporal ensemble forecasting model for short-term electric consumption forecasting. The proposed work involves exploring electric consumption profiles at the apartment level through cluster analysis based on the k-means algorithm. The ensemble forecasting model consists of two deep learning models; Long Short-Term Memory Unit (LSTM) and Gated Recurrent Unit (GRU). First, the apartment-level historical electric consumption data is clustered. Later the clusters are aggregated based on consumption profiles of consumers. At the building and floor level, the ensemble models are trained using aggregated electric consumption data. The proposed ensemble model forecasts the electric consumption at three spatial scales apartment, building, and floor level for hourly, daily, and weekly forecasting horizon. Furthermore, the impact of spatial-temporal granularity and cluster analysis on the prediction accuracy is analyzed. The dataset used in this study comprises high-resolution electric consumption data acquired through smart meters recorded on an hourly basis over the period of one year. The consumption data belongs to four multifamily residential buildings situated in an urban area of South Korea. To prove the effectiveness of our proposed forecasting model, we compared our model with widely known machi
ISSN:1996-1073
1996-1073
DOI:10.3390/en14113020